

Gemeinsam vorwärts mit unseren Kunden

Seit mehr als 50 Jahren gehört **SANKYO OILLESS** zu den führenden Herstellern von wartungsfreien Gleitelementen. Als Vorreiter in der Produktion von Stanz- und Presswerkzeugkomponenten für die Automobilindustrie beliefert **SANKYO OILLESS** ebenso Produkte für viele andere Anwendungsbereiche, wie z.B. Formenbau, Maschinenbau, Verpackungsindustrie, Schwerindustrie, Aerospace u.v.a.m.

Die von *SANKYO OILLESS* entwickelten Technologien haben die Verringerung bzw. Eliminierung von Reibung, Verschleiß und Schmierung im Fokus. Darüber hinaus stellt *SANKYO OILLESS* Dienstleistungen und Qualitätsprodukte bereit, um Ihnen jederzeit bestmögliche Lösungen für Ihre Anforderungen zu bieten.

Die Vorteile von Gleitlagern gegenüber Wälzlagern

In einer Vielzahl von Anwendungen ersetzen Konstrukteure zunehmend Wälzlager durch Gleitlager. Neben dem einfachen Einbau und der Kosteneffektivität bieten Gleitlager eine Reihe deutlicher Vorteile. Gleitlager benötigen weniger Bauraum, haben eine grössere Lastaufnahme, sind wartungsfrei bzw. wartungsarm, einfacher zu montieren, vibrations-unempfindlich und laufen leiser.

Die nachstehende Liste gibt einen Überblick über die allgemeinen Vorteile von Gleitlagern im Vergleich zu Wälzlagern.

Gleitlager

- höhere Lastaufnahme bei gleichzeitig kleinerem Bauraum
- höherer Widerstand gegenüber Schwingungen und höhere Lebensdauer
- einfacherer Einbau
- geringere Kosten für Gehäuse und Wellenoberflächen
- grosszügigere Wellentoleranzen möglich
- keine Befestigungsmaterialien notwendig wie z. B. Seegerring
- kompensiert Fluchtungsfehler und verringert die Kantenlast

Wälzlager

- empfindlich bei Stossbelastung, Schwingungsbeanspruchung und gegen Kantenbelastung
- hohe Kosten für Lager, Gehäuse, Gegenflächen und -Befestigungsmaterialien
- grosser Bauraum notwendig
- neigt zu Geräuschentwicklung

Technologien für Höchstleistungen

SANKYO OILLESS Produkte werden in unseren eigenen Werken gefertigt und weltweit vertrieben.

Wir bieten hochqualitative wartungsfreie Gleitelemente nach weltweiten Standards und Normen für den Einsatz in

- Presswerkzeugen
- Spritzgussformen
- dem allgemeinen Maschinenbau

Als erfahrener Spezialist verfügen wir über entsprechendes Know-how der Tribologie, um stets die besten Lösungen für Ihre Anforderungen zu bieten. Wir liefern schmierfreie Gleitelemente in großer Vielfalt und Ausführung; auch nach Kundenzeichnung.

Qualität und Leistung sind unsere ständige Verpflichtung!

Informationen zur Produktgruppe

Buchsen mit Festschmierstoff

Die Festschmierstoffanteile müssen die Möglichkeit haben, sich in den Gleitspalt einzulagern. Dies geschieht einmal durch Abrieb und andererseits durch Ausquellen aus den Depots im Mikrometerbereich. Daraus folgt, daß eine Paarung mit Spiel "0" bei Verwendung unserer Gleitelemente aus Bronze mit Festschmierstoff nicht möglich ist; dies würde unweigerlich zum Klemmen führen.

Buchsen aus Bronze mit Festschmierstoff, z. B. Typ SOB, verengen sich in der Bohrung nach dem Einfügen vom Toleranzbereich F7 auf einen Toleranzbereich H7. Voraussetzungen dafür sind:

- H7 (die Toleranz der Gehäusebohrung)
- eine entsprechende Wandstärke des Gehäuses
- die Einhaltung der optimalen Wandstärke der Buchse

Aus der Erfahrung der verschiedensten Einsatzfälle sollten folgende Toleranzfelder beim Gegenlaufpartner bevorzugt werden:

•

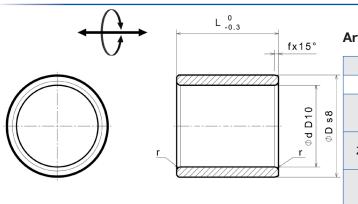
- h6 (für höchste Präzision im Schnittwerkzeug- / Formenbau)
- f7, e7 (für hohe Genauigkeit im Allgemeinen Maschinenbau)
- d8, e8 (für hohe Belastung im Schwermaschinenbau)
- e8 + D9 (für Extremfälle im Anlagenbau / Ofenbetrieb / Off-shore-Bereich)

Hinweis:

Bei sehr kleinen Bewegungen kann der Graphit sich nicht auf der kompletten Oberfläche einlagern. Sprechen Sie bitte mit der Technik wenn Sie sehr kleine Bewegungen realisieren wollen.

Gegenlaufpartner

Als Gegenlaufpartner kommen **nitrierte oder gehärtete Stähle** bzw. solche mit **hartverchromter Oberfläche** in Frage (**HRC > 35**).


Die Härtedifferenz zwischen unserer Bronze mit FSS und dem Gegenlaufpartner sollte ca. **100 HB** betragen, um ein optimales Gleitverhalten zu gewährleisten.

Die Oberfläche des Gegenlaufpartners sollte zwischen $Rz = 3...6,3 \mu m$ (geschliffen) liegen.

Müssen Führungen, ähnlich wie bei Großwerkzeugen der Stanztechnik, während des Betriebes kontinuierlich auseinanderfahren, sollte der Gegenlaufpartner mit entsprechend großzügig ausgeführten Einlaufschrägen versehen werden.

Artikeleigenschaften:

Basismaterial	Polyacetal
Selbstschmierend	Nein
7 Flächennysseuma D	25 N/mm²
Zul. Flächenpressung P	35 N/mm² (mit Öl)
7. Claitean huindinkaitu	50 m/min
Zul. Gleitgeschwindigkeit v	200 m/min (mit Öl)
Zul P*v-Wert	100 N/mm² x m/min
Zui P"v-wert	200 N/mm² x m/min (mit Öl)
Temperatureinsatzbereich	-50°C / +80°C

Artikel-Nr.:	Artikelbez.:	Innen-Ø d:	Außen-Ø D:	Länge L:	f:	r:
11604030	POB 4-6-3			3		
11604040	POB 4-6-4	4	6	4		
11604050	POB 4-6-5	5 6	0	5		
11604060	POB 4-6-6					
11605030	POB 5-7-3			3		
11605040	POB 5-7-4			4		
11605050	POB 5-7-5	5	7	5	0.1	0.1
11605060	POB 5-7-6			6	0,1	0,1
11605080	POB 5-7-8			8		
11606040	POB 6-8-4			4		
11606050	POB 6-8-5			5		
11606060	POB 6-8-6	6	8	6		
11606080	POB 6-8-8			8		
11606100	POB 6-8-10			10		
11608050	POB 8-10-5			5		
11608060	POB 8-10-6			6		
11608080	POB 8-10-7	8	10	7		
11608100	POB 8-10-10	0	10	10		
11608120	POB 8-10-12			12		
11608150	POB 8-10-15			15		
11610050	POB 10-12-5			5		
11610060	POB 10-12-6			6		
11610080	POB 10-12-8			8		
11610100	POB 10-12-10	10	12	10	0,2	0,2
11610120	POB 10-12-12			12		
11610150	POB 10-12-15			15		
11610200	POB 10-12-20			20		
11612060	POB 12-14-6			6		
11612080	POB 12-14-8			8		
11612100	POB 12-14-10	10	1.4	10		
11612120	POB 12-14-12	12	14	12		
11612150	POB 12-14-15			15		
11612200	POB 12-14-20			20		
11616100	POB 16-18-10			10		
11616120	POB 16-18-12			12		
11616150	POB 16-18-15	16	18	15	0,3	0,3
11616200	POB 16-18-20			20		
11616250	POB 16-18-25			25		

Artikel-Informationen

Artikel-Nr.:	Artikelbez.:	Innen-Ø d:	Außen-Ø D:	Länge L:	f:	r:
11616300	POB 16-18-30	16	18	30		
11618100	POB 18-20-10			10		
11618120	POB 18-20-12			12		
11618150	POB 18-20-15	18	20	15		
11618200	POB 18-20-20	10	20	20		
11618250	POB 18-20-25			25		
11618300	POB 18-20-30			30		
11620150	POB 20-23-15			15		
11620200	POB 20-23-20	20	23	20		
11620250	POB 20-23-25	20	23	25		
11620300	POB 20-23-30			30		
11625150	POB 25-28-15			15	0,3	0,3
11625200	POB 25-28-20			20	0,3	0,3
11625220	POB 25-28-22	25	28	22		
11625250	POB 25-28-25			25		
11625300	POB 25-28-30			30		
11630200	POB 30-34-20			20		
11630250	POB 30-34-25	30	34	25		
11630300	POB 30-34-30	30	34	30		
11630400	POB 30-34-40			40		
11632200	POB 32-36-20			20		
11632250	POB 32-36-25	32	36	25		
11632300	POB 32-36-30	32	30	30		
11632400	POB 32-36-40			40		

Werkstoffdaten

					İ		
Werks	stoff	SO#50SP2*	SO#50SP5	SO#50SP7	SO#50SP8	SO#50SP13	SO#50B
		Hartmessing mit FSS	Alu-bronze mit FSS	Alu-bronze mit FSS	Hartmessing mit FSS	Bronze mit FSS	Rotguss mit FSS
Selbstsch	mierend	Ja	Ja	Ja	Ja	Ja	Ja
Schmie	rstoff	Graphit	Graphit	Graphit	Graphit	Graphit	Graphit
Zul. Flächer [N/mi	-	100	100	120	130	120	50
Zul. Gleitgesc	_	30	10	10	15	10	50
Zul. P*v [N/mm² *		200	150	200	200	200	100
Temperatur [°C]	Standard Max	-50 / +200 +300	-50 / +200 +300	-50 / +200 +300	-50 / +200 +300	-50 / +200 +300	-50 / +200 +400
Reibkoeffizient	Anfänglich Dauerbetrieb	0,15 0,07	0,15 0,07	0,15 0,07	0,15 0,07	0,2 0,15	0,15 0,07
Brinelll [HE		>210	>210	>260	220 ~ 260	>280	>60
						W	/eitere Daten
Dehn	-	>12	>18	>2	>3	>0,5	>15
Dich [kg/di		7,9	7,7	7,8	7,8	7,2	8,7
Zugfest [N/mi	_	>755	>686	>833	>700	>550	>195
Streckg		>412	>372	>509	-	-	>105
E-Mo	dul	97000	108000	123600	108000	145000	96000
Lineare Wärme	•	1,9	1,6	1,6	1,9	1,71	1,8

^{*:} Material gemäß den SANKYO OILLESS Standards

^{**:} gegen Stahl, gehärtet und geschliffen

Zinn- bronze	Sinter- bronze	SO#50PB	CuSn8	SO#50S45C	SO#50F	Polyacetal
V. 01120	J. 51120	Zinnbronze	nach DIN 17662	Stahl mit FSS	Grauguss mit FSS	Kunststoff
Nein	Ja	Nein	Nein	Ja	Ja	Nein
-	ÖI	-	-	Graphit	Graphit	Graphit
80	50	80	40	30	5	25 35 (mit Öl)
20	300	50	120	10	10	50 200 (m. Öl)
-	96	100	-	80	50	100 200 (m. Öl)
-50 / +200 +300	-12 / +90	-50 / +200 +300	-200 / +200	-50 / +150	-50 / +150	-50 / +80
0,16	0,09	0,15 0,07	-	0,01	-	-
>80	>25	>80	-	>375	160 ~ 220	115 (HRR)
>6	-	>5	-	19	-	73
8,7	6,5 ~ 7,0	8,2	8,8	7,8	7,1 ~ 7,3	1,4
>295	-	>295	-	>690	>250	69
>161	-	>161	-	-	-	-
108000	-	108000	115000	-	-	-
1,8	-	1,8	-	1,1	1	7,7

Chemische Resistenzen

Wasser

Werkstoff	SO#50SP2 SO#50SP8	SO#50B	SO#50SP5 SO#50SP7 SO#50SP13 SO#50AIB	SO#50F	SO#50S45C	Polyacetal
	Hartmessing	Rotguss	Alu-bronze	Grauguss	Stahl	Kunststoff
Süßwasser	0	0	0	X	0	0
Salzwasser	Δ	0	0	X	0	0

Säuren

Werkstoff	SO#50SP2 SO#50SP8	SO#50B	SO#50SP5 SO#50SP7 SO#50SP13 SO#50AIB	SO#50F	SO#50S45C	Polyacetal
	Hartmessing	Rotguss	Alu-bronze	Grauguss	Stahl	Kunststoff
Alkohol	0	0	0	-	0	-
Ameisensäure	-	-	-	-	-	X
Chlor (trocken)	0	0	0	-	0	-
Chlor (feucht)	Χ	Δ	Δ	-	-	-
Chromsäure	Х	Χ	X	Χ	-	-
Essigsäure	Х	X	⊚ (20°C) △ (118°C)	X	©	0
Salzsäure	-	0	0	Χ	-	X
Konzentrierte Salzsäure	Х	Χ	Δ	Χ	X	-
Milchsäure	X	Χ	X	Χ	0	X
Phenol	-	-	-	-	-	X
Phosporsäure	Х	0	0	Χ	Δ	X
Salpetersäure	Х	Χ	X	Χ	0	-
Schwefelsäure (40-80%)	Х	Δ	Δ	X	Δ	X* △**
Schwefelsäure (80-95%)	X	0	0	X	Δ	X* △**
Verdünnte Salzsäure	Δ	-	-	-	-	Χ
Wasserstoff Peroxid	Δ	0	0	Х	0	-

^{*:} Hohe Konzentration

^{**:} Niedrige Konzentration

Legende							
⊚: Bevorzugt	O: keine Einschränkungen	∆: Beeinträchtigt					
X: Nicht für den Gebrauch geeignet	-: keine Informationen						

Chemische Resistenzen

Alkale

Werkstoff	SO#50SP2 SO#50SP8	SO#50B	SO#50SP5 SO#50SP7 SO#50SP13 SO#50AIB	SO#50F	SO#50S45C	Polyacetal
	Hartmessing	Rotguss	Alu-bronze	Grauguss	Stahl	Kunststoff
Amoniak (trocken)	©	0	0	0	© (20°C) X (Gas)	X
Amoniak (feucht)	X	X	Х	0	⊚ (20°C) X (Gas)	Х
Amoniak (flüssig)	X	Х	X	-	0	Х
Eisenchlorid	X	0	0	Χ	Δ	-
Kaliumhydroxid	0	0	0	-	-	-
Kalziumchlorid	Х	0	0	Δ	0	-
Kalziumhydroxid	0	0	0	0	-	0
Natronlauge	0	0	0	-	0	-
Schwefel (trocken)	0	0	0	Δ	-	0
Schwefel (feucht)	Х	Х	Х	Δ	-	0

Lösungsmittel

Werkstoff	SO#50SP2 SO#50SP8	SO#50B	SO#50SP5 SO#50SP7 SO#50SP13 SO#50AIB	SO#50F	SO#50S45C	Polyacetal
	Hartmessing	Rotguss	Alu-bronze	Grauguss	Stahl	
Aceton	0	0	0	0	0	Δ
Benzol	-	-	-	-	-	Δ
Ethylenglykol	0	0	0	Δ	-	-
Kohlenstofftetrachlorid (trocken)	©	0	0	Х	0	-
Kohlenstofftetrachlorid (feucht)	Х	0	0	Х	-	-
Methanol	0	0	0	0	0	Δ
Toluol	0	0	0	0	-	-

Legende							
⊚: Bevorzugt	O: keine Einschränkungen	∆: Beeinträchtigt					
X: Nicht für den Gebrauch geeignet	-: keine Informationen						

Chemische Resistenzen

Schmierstoffe u. ä.

Werkstoff	SO#50SP2 SO#50SP8	SO#50B	SO#50SP5 SO#50SP7 SO#50SP13 SO#50AIB	SO#50F	SO#50S45C	Polyacetal
	Hartmessing	Rotguss	Alu-bronze	Grauguss	Stahl	Kunststoff
Benzin	0	0	0	0	0	0
Diesel	-	-	-	-	-	0
Erdöl	Δ	0	0	0	0	-
Lack	0	0	0	Δ	-	-
Petroleum	0	0	0	0	0	-
Pflanzliches Öl	0	0	0	Δ	-	-
Schmierstoff	0	0	0	0	0	0
Schweröl	0	0	0	0	0	-
Tierisches Öl	0	0	0	-	-	-

Legende		
⊚: Bevorzugt	O: keine Einschränkungen	△: Beeinträchtigt
X: Nicht für den Gebrauch geeignet	-: keine Informationen	

Allgemeine und technische Informationen

