

Gemeinsam vorwärts mit unseren Kunden

Seit mehr als 50 Jahren gehört **SANKYO OILLESS** zu den führenden Herstellern von wartungsfreien Gleitelementen. Als Vorreiter in der Produktion von Stanz- und Presswerkzeugkomponenten für die Automobilindustrie beliefert **SANKYO OILLESS** ebenso Produkte für viele andere Anwendungsbereiche, wie z.B. Formenbau, Maschinenbau, Verpackungsindustrie, Schwerindustrie, Aerospace u.v.a.m.

Die von *SANKYO OILLESS* entwickelten Technologien haben die Verringerung bzw. Eliminierung von Reibung, Verschleiß und Schmierung im Fokus. Darüber hinaus stellt *SANKYO OILLESS* Dienstleistungen und Qualitätsprodukte bereit, um Ihnen jederzeit bestmögliche Lösungen für Ihre Anforderungen zu bieten.

Die Vorteile von Gleitlagern gegenüber Wälzlagern

In einer Vielzahl von Anwendungen ersetzen Konstrukteure zunehmend Wälzlager durch Gleitlager. Neben dem einfachen Einbau und der Kosteneffektivität bieten Gleitlager eine Reihe deutlicher Vorteile. Gleitlager benötigen weniger Bauraum, haben eine grössere Lastaufnahme, sind wartungsfrei bzw. wartungsarm, einfacher zu montieren, vibrations-unempfindlich und laufen leiser.

Die nachstehende Liste gibt einen Überblick über die allgemeinen Vorteile von Gleitlagern im Vergleich zu Wälzlagern.

Gleitlager

- höhere Lastaufnahme bei gleichzeitig kleinerem Bauraum
- höherer Widerstand gegenüber Schwingungen und höhere Lebensdauer
- einfacherer Einbau
- geringere Kosten für Gehäuse und Wellenoberflächen
- grosszügigere Wellentoleranzen möglich
- keine Befestigungsmaterialien notwendig wie z. B. Seegerring
- kompensiert Fluchtungsfehler und verringert die Kantenlast

Wälzlager

- empfindlich bei Stossbelastung, Schwingungsbeanspruchung und gegen Kantenbelastung
- hohe Kosten für Lager, Gehäuse, Gegenflächen und -Befestigungsmaterialien
- grosser Bauraum notwendig
- neigt zu Geräuschentwicklung

Technologien für Höchstleistungen

SANKYO OILLESS Produkte werden in unseren eigenen Werken gefertigt und weltweit vertrieben.

Wir bieten hochqualitative wartungsfreie Gleitelemente nach weltweiten Standards und Normen für den Einsatz in

- Presswerkzeugen
- Spritzgussformen
- dem allgemeinen Maschinenbau

Als erfahrener Spezialist verfügen wir über entsprechendes Know-how der Tribologie, um stets die besten Lösungen für Ihre Anforderungen zu bieten. Wir liefern schmierfreie Gleitelemente in großer Vielfalt und Ausführung; auch nach Kundenzeichnung.

Qualität und Leistung sind unsere ständige Verpflichtung!

Informationen zur Produktgruppe

Platten, Winkelleisten u. ä.

Bei diesen Elementen kann das Spiel zwischen den Gleitpartnern je nach Einsatzfall und gewünschter Genauigkeit zwischen 0,02 und 0,15 mm liegen.

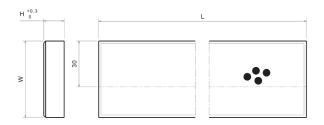
Im Allgemeinen werden Führungsschlitten so gefertigt, daß sich ein Spiel von 0,05 mm und ein senkrechtes Spiel von 0,1 mm ergibt.

Hinweis:

Bei sehr kleinen Bewegungen kann der Graphit sich nicht auf der kompletten Oberfläche einlagern. Sprechen Sie bitte mit der Technik wenn Sie sehr kleine Bewegungen realisieren wollen.

Gegenlaufpartner

Als Gegenlaufpartner kommen **nitrierte oder gehärtete Stähle** bzw. solche mit **hartverchromter Oberfläche** in Frage (**HRC > 35**).


Die Härtedifferenz zwischen unserer Bronze mit FSS und dem Gegenlaufpartner sollte ca. **100 HB** betragen, um ein optimales Gleitverhalten zu gewährleisten.

Die Oberfläche des Gegenlaufpartners sollte zwischen Rz = 3...6,3 μm (geschliffen) liegen.

Müssen Führungen, ähnlich wie bei Großwerkzeugen der Stanztechnik, während des Betriebes kontinuierlich auseinanderfahren, sollte der Gegenlaufpartner mit entsprechend großzügig ausgeführten Einlaufschrägen versehen werden.

Artikeleigenschaften:

Basismaterial	Sondermessing (SO#50SP2)
Selbstschmierend	Ja
Schmierstoff	Graphit
Zul. Flächenpressung P	100 N/mm²
Zul. Gleitgeschwindigkeit v	30 m/min
Zul P*v-Wert	200 N/mm² x m/min
Temperatureinsatzbereich	-50°C / +200°C (max. 300°C)
Reibungskoeffizient	0,07

Artikel-Nr.:	Artikelbez.:	Breite W:	Länge L:	Höhe H:
24506050	SOLP-5 605			10
24510050	SOLP-5 1005	50	1005	10

Artikel-Informationen

Allgemeine und technische Informationen

Nachbearbeitung

SANKYO OILLESS - Bronzen lassen sich sehr gut bearbeiten. Grundsätzlich besteht in der Bearbeitung unserer Bronze mit Festschmierstoff kein großer Unterschied zur Bearbeitung von handelsüblichen Stählen, so daß kein Spezialwerkzeug benötigt wird. Allerdings sollten nur scharfe bzw. möglichst neue Werkzeuge verwendet werden.

Fräsen

Bei der Bearbeitung mit HSS-Werkzeugen bzw. Hartmetall ist der Einsatz von Kühl-Schmiermittel erforderlich. Bei größerem Spanabhub zunächst bis auf ca. 0,3mm vorschruppen. Grundsätzlich gilt: Mit wenig Kraftaufwand, wenig Vorschub, bei hohen Drehzahlen und mit geringem Spanabhub fräsen / vorschruppen.

Bohren

Bei der Bearbeitung mit HSS-Werkzeugen ist der Einsatz von Kühl-Schmiermittel erforderlich. Das Bohren erfolgt wie bei herkömmlichen Stahl, im Bedarfsfall jedoch den Vorschub bei gleicher Drehzahl erhöhen. Flachleisten rückseitig bohren und anschließend auf der Gleitfläche nachsenken, wenn das Bohren durch Festschmierstoff-Depots notwendig ist.

Schleifen

Bearbeitung mit Schleifscheiben und Einsatz von Kühlmitteln erforderlich.

Korngröße	46 - 60
Material	Siliziumcarbid
Drehgeschwindigkeit	1500 U/min
Arbeitsgeschwindigkeit	30 m/min

Reiben

Bei der Bearbeitung mit HSS-Reibahlen ist der Einsatz von Kühl-Schmiermittel erforderlich. Das Reiben erfolgt wie bei herkömmlichen Stahl, im Bedarfsfall jedoch den Vorschub bei gleicher Drehzahl erhöhen.

Schleifen

Beispiel bis 100mm	Außendrehen	Innendrehen	
Drehzahl	ca. 1000 U/min	ca. 500 U/min	
Vorschub	ca. 0,1 m/min	ca. 0,07 m/min	
Werkzeug	Hartmetall	Hartmetall	

Allgemeine und technische Informationen

Sonderanfertigungen

Neben der großen Vielzahl an Standardteilen, bieten wir auch Dreh- und Frästeile nach Kundenwunsch an. Diese können aus Stahl oder unserer wartungsfreien Bronze mit Festschmierstoffen gefertigt werden. Auch Modifikationen an Standardteilen sind möglich. Zur Begutachtung der Machbarkeit benötigen wir lediglich eine Zeichnung oder ein 3D Modell, mit Angaben der Belastungen und Einsatzbedingungen.

Unser fachkundiges Team berät Sie gerne, auch bei Ihnen vor Ort. Die Abteilung Engineering erreichen Sie:

Tel.: +49 2103 584 800

E-Mail: technik@de.sankyo-oilless.com

Beispiele

Sonder-Winkelleiste

Sonderausführung einer Sonderspindelmutter

Vorgefertigtes Halbschalen-Set mit Gewinde zur Endbearbeitung beim Kunden

Große Buchsen für alle Anwendungen

Allgemeine und technische Informationen

Werkstoffdaten

Werks	stoff	SO#50SP2*	SO#50SP5	SO#50SP7	SO#50SP8	SO#50SP13	SO#50B
		Hartmessing mit FSS	Alu-bronze mit FSS	Alu-bronze mit FSS	Hartmessing mit FSS	Bronze mit FSS	Rotguss mit FSS
Selbstsch	mierend	Ja	Ja	Ja	Ja	Ja	Ja
Schmie	rstoff	Graphit	Graphit	Graphit	Graphit	Graphit	Graphit
Zul. Flächer [N/m/		100	100	120	130	120	50
Zul. Gleitgesc	_	30	10	10	15	10	50
Zul. P*v [N/mm² *		200	150	200	200	200	100
Temperatur [°C]	Standard Max	-50 / +200 +300	-50 / +200 +300	-50 / +200 +300	-50 / +200 +300	-50 / +200 +300	-50 / +200 +400
Reibkoeffizient	Anfänglich Dauerbetrieb	0,15 0,07	0,15 0,07	0,15 0,07	0,15 0,07	0,2 0,15	0,15 0,07
Brinelll [HE		>210	>210	>260	220 ~ 260	>280	>60
						W	/eitere Daten
Dehn	•	>12	>18	>2	>3	>0,5	>15
Dich [kg/di		7,9	7,7	7,8	7,8	7,2	8,7
Zugfest [N/mi	-	>755	>686	>833	>700	>550	>195
Streckg		>412	>372	>509	-	-	>105
E-Mo	dul	97000	108000	123600	108000	145000	96000
Lineare Wärme	_	1,9	1,6	1,6	1,9	1,71	1,8

^{*:} Material gemäß den SANKYO OILLESS Standards

^{**:} gegen Stahl, gehärtet und geschliffen

Allgemeine und technische Informationen

Zinn- bronze	Sinter- bronze	SO#50PB	CuSn8	SO#50S45C	SO#50F	Polyacetal
		Zinnbronze	nach DIN 17662	Stahl mit FSS	Grauguss mit FSS	Kunststoff
Nein	Ja	Nein	Nein	Ja	Ja	Nein
-	Öl	-	-	Graphit	Graphit	Graphit
80	50	80	40	30	5	25 35 (mit Öl)
20	300	50	120	10	10	50 200 (m. Öl)
-	96	100	-	80	50	100 200 (m. Öl)
-50 / +200 +300	-12 / +90	-50 / +200 +300	-200 / +200	-50 / +150	-50 / +150	-50 / +80
0,16	0,09	0,15 0,07	-	0,01	-	-
>80	>25	>80	-	>375	160 ~ 220	115 (HRR)
>6	-	>5	-	19	-	73
8,7	6,5 ~ 7,0	8,2	8,8	7,8	7,1 ~ 7,3	1,4
>295	-	>295	-	>690	>250	69
>161	-	>161	-	-	-	-
108000	-	108000	115000	-	-	-
1,8	-	1,8	-	1,1	1	7,7

Allgemeine und technische Informationen

Chemische Resistenzen

Wasser

Werkstoff	SO#50SP2 SO#50SP8	SO#50B	SO#50SP5 SO#50SP7 SO#50SP13 SO#50AIB	SO#50F	SO#50S45C	Polyacetal
	Hartmessing	Rotguss	Alu-bronze	Grauguss	Stahl	Kunststoff
Süßwasser	0	0	0	Х	0	0
Salzwasser	Δ	0	0	Χ	0	0

Säuren

Werkstoff	SO#50SP2 SO#50SP8	SO#50B	SO#50SP5 SO#50SP7 SO#50SP13 SO#50AIB	SO#50F	SO#50S45C	Polyacetal
	Hartmessing	Rotguss	Alu-bronze	Grauguss	Stahl	Kunststoff
Alkohol	0	0	0	-	0	-
Ameisensäure	-	-	-	-	-	Х
Chlor (trocken)	0	0	0	-	0	-
Chlor (feucht)	Х	Δ	Δ	-	-	-
Chromsäure	Χ	Χ	X	Χ	-	-
Essigsäure	X	X	⊚ (20°C) △ (118°C)	X	0	0
Salzsäure	-	0	0	Χ	-	Χ
Konzentrierte Salzsäure	Х	Χ	Δ	Χ	X	-
Milchsäure	Х	Χ	X	Χ	0	X
Phenol	-	-	-	-	-	X
Phosporsäure	Х	0	0	X	Δ	Χ
Salpetersäure	Х	Χ	Χ	Χ	0	-
Schwefelsäure (40-80%)	X	Δ	Δ	X	Δ	X* △**
Schwefelsäure (80-95%)	X	0	0	X	Δ	X* △**
Verdünnte Salzsäure	Δ	-	-	-	-	Χ
Wasserstoff Peroxid	Δ	0	0	X	0	-

^{*:} Hohe Konzentration

^{**:} Niedrige Konzentration

Legende						
⊚: Bevorzugt	O: keine Einschränkungen	△: Beeinträchtigt				
X: Nicht für den Gebrauch geeignet	-: keine Informationen					

Allgemeine und technische Informationen

Chemische Resistenzen

Alkale

Werkstoff	SO#50SP2 SO#50SP8	SO#50B	SO#50SP5 SO#50SP7 SO#50SP13 SO#50AIB	SO#50F	SO#50S45C	Polyacetal
	Hartmessing	Rotguss	Alu-bronze	Grauguss	Stahl	Kunststoff
Amoniak (trocken)	0	0	0	0	© (20°C) X (Gas)	X
Amoniak (feucht)	X	X	X	0	© (20°C) X (Gas)	X
Amoniak (flüssig)	X	X	X	-	©	X
Eisenchlorid	X	0	0	Χ	Δ	-
Kaliumhydroxid	0	0	0	-	-	-
Kalziumchlorid	Х	0	0	Δ	0	-
Kalziumhydroxid	0	0	0	0	-	0
Natronlauge	0	0	0	-	0	-
Schwefel (trocken)	0	0	0	Δ	-	0
Schwefel (feucht)	Х	Х	X	Δ	-	0

Lösungsmittel

Werkstoff	SO#50SP2 SO#50SP8	SO#50B	SO#50SP5 SO#50SP7 SO#50SP13 SO#50AIB	SO#50F	SO#50S45C	Polyacetal
	Hartmessing	Rotguss	Alu-bronze	Grauguss	Stahl	
Aceton	0	0	0	0	0	Δ
Benzol	-	-	-	-	-	Δ
Ethylenglykol	0	0	0	Δ	-	-
Kohlenstofftetrachlorid (trocken)	©	0	0	Х	0	-
Kohlenstofftetrachlorid (feucht)	Х	0	0	Х	-	-
Methanol	0	0	0	0	0	Δ
Toluol	0	0	0	0	-	-

Legende					
⊚: Bevorzugt	O: keine Einschränkungen	∆: Beeinträchtigt			
X: Nicht für den Gebrauch geeignet	-: keine Informationen				

Allgemeine und technische Informationen

Chemische Resistenzen

Schmierstoffe u. ä.

Werkstoff	SO#50SP2 SO#50SP8	SO#50B	SO#50SP5 SO#50SP7 SO#50SP13 SO#50AIB	SO#50F	SO#50S45C	Polyacetal
	Hartmessing	Rotguss	Alu-bronze	Grauguss	Stahl	Kunststoff
Benzin	0	0	0	0	0	0
Diesel	-	-	-	-	-	0
Erdöl	Δ	0	0	0	0	-
Lack	0	0	0	Δ	-	-
Petroleum	0	0	0	0	0	-
Pflanzliches Öl	0	0	0	Δ	-	-
Schmierstoff	0	0	0	0	0	0
Schweröl	0	0	0	0	0	-
Tierisches Öl	0	0	0	-	-	-

Legende					
⊚: Bevorzugt	O: keine Einschränkungen	∆: Beeinträchtigt			
X: Nicht für den Gebrauch geeignet	-: keine Informationen				

Allgemeine und technische Informationen

Wartung und Schmierung

Vor dem Einbringen der Gleitelemente sind die Aufnahmeflächen der Gehäuse zu säubern, ein Ölfilm auf der Fügefläche erleichtert das Eindrücken bei Buchsen. Vor Montage der Lagerstelle sollten die Gleitflächen mit einem leichten Fettfilm versehen werden, um den Einlaufverschleiß gering zu halten und den Festschmierstoff zu aktivieren.

Folgende Schmierfette sollten bevorzugt werden:

ELKALUB GLS 364	ELKALUB	120°C	Für die Lebensmittelindustrie
ELKALUB GLS 595/N2	ELKALUB	300°C	Für die Lebensmittelindustrie
ELKALUB GLS 993 H1	ELKALUB	150°C	Für die Lebensmittelindustrie
GLEITMO 805	FUCHS	110°C	
ALTEMP QNB 50	KLÜBER	150°C	
Klüberalfa DH 3-350	KLÜBER	230°C	
Klüberfood NH1 CH 2-150	KLÜBER	250°C	Für die Lebensmittel- & Pharmaindustrie
Klübertemp GR AR 555	KLÜBER	250°C	
PARALIQ P 68	KLÜBER	100°C	Für die Lebensmittel- & Pharmaindustrie
Gadus S2 V100 2	SHELL	130°C	
Gadus S3 V100 2	SHELL	160°C	
Multi-purpose grease Nr.12511	PRESSOL	80°C	

Die verwendeten Schmierstoffe müssen frei von Additiven wie MoS2 (Molybdändisulfid) oder EP sein.

Die folgenden durchzuführenden Arbeiten beschränken sich in der Regel auf eine Kontrolle des Verschleißes im Zeitraum von ½ bis 2 Jahren, je nach Einsatzdauer und Belastung. Nach jeder Demontage sollte ein einmaliges Nachfetten erfolgen, den eingesinterten Gleitfilm aus Festschmierstoff dabei nicht entfernen. Kontinuierliche Schmierstoffeinbringung ist nicht erforderlich, da die Teile unter Beachtung der Einsatzkriterien für Gleitelemente aus Bronze mit Festschmierstoff wartungsfrei sind.

Transport und Lagerung

Die Teile sind staubfrei und trocken zu lagern, mechanische Beschädigungen bei Transport und Lagerung sind zu vermeiden. Ebenso ist der Kontakt mit organischen und anorganischen Lösemitteln zu verhindern, da es hierbei zur Zerstörung des Festschmierstoffes kommen kann.

14